Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells.

نویسندگان

  • Jiahao Guo
  • Suxia Liang
  • Yantao Shi
  • Ce Hao
  • Xuchun Wang
  • Tingli Ma
چکیده

Exploiting an alternative of the Pt-based counter-electrode materials for the triiodide reduction reaction has become a major interest in the fundamental research of dye-sensitized solar cells. Transition-metal selenides have recently been demonstrated as promising non-precious metal electrocatalysts for the triiodide reduction reaction. Herein, we prepared a series of transition-metal selenides via a free-reductant solvothermal method and used them as counter-electrodes in high efficiency dye-sensitized solar cells. The electrochemical results showed that these selenides had excellent catalytic activity for the reduction of the triiodine/iodine couple, and except for MoSe2, the conversion efficiencies of the corresponding dye-sensitized solar cells were comparable to the sputtered Pt counter-electrode. Theoretical investigation clearly revealed that the unsatisfactory performance of MoSe2 mainly originated from the processes of adsorption and charge-transfer. These findings can help to better understand the electrocatalytic processes and thus offer some useful guidelines to develop more efficient electrochemical catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

Characteristics of PANi/rGO Nanocomposite as Protective Coating and Catalyst in Dye-sensitized Solar Cell Counter Electrode Deposited on AISI 1086 Steel Substrate

One of the possibilities to mass-produce dye-sensitized solar cell (DSSC) device is if it could be embedded to the area atop metal roof. However, the use of metal substrate is constrained by the corrosion caused by the electrolyte solution used in the DSSC device such as iodide/tri-iodide (I-/I3-). In this study, we propose the utilization of polyaniline/reduced graphene o...

متن کامل

Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells

The counter electrode has a great influence on the performance of the dye-sensitized solar cells (DSSCs). The research and development of Pt-free counter electrode is becoming one of the hot areas in the field of DSSCs. Herein, we successfully synthesized a ternary metal sulfide (CoNi2S4) nanostructure on FTO substrate by hydrothermal method and investigated its application as counter electrode...

متن کامل

Nitrogen-doped carbon nanotubes with metal nanoparticles as counter electrode materials for dye-sensitized solar cells.

Nitrogen-doped carbon nanotubes decorated with Co and Ni metal nanoparticles were assessed as counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). These composites show good electrocatalytic activity toward the counter electrode reduction reaction (I3(-)→ I(-)) in DSSCs. The resulting devices using these composites as CEs display photovoltaic performance as good as, or even better th...

متن کامل

Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells.

Two transition metal tellurides, CoTe and NiTe2, were synthesized and for the first time employed as the counter electrodes (CEs) with high catalytic activity for reduction of I3(-) in dye-sensitized solar cells (DSCs). Using CoTe and NiTe2-based CEs, photoelectric conversion efficiencies (PCEs) of 6.92% and 7.21% were achieved for DSCs, respectively, comparable to that of 7.04% achieved when u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 43  شماره 

صفحات  -

تاریخ انتشار 2015